

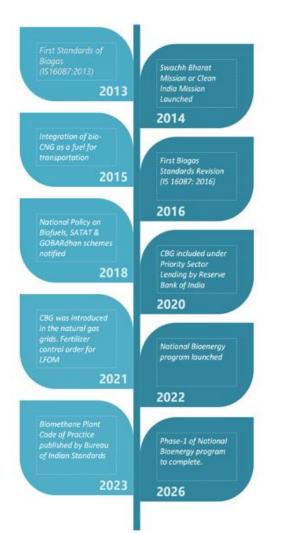




# **Context Setting Presentation**

Date: 10<sup>th</sup> September 2024

HICC, Hyderabad




## Overview of Indian Sugar Industry

- Sugar Industry is one of the most energy-intensive industries in the country.
- Average operational days 150 days/annum
- India has around 534 sugar mill in operation with different capacity ranging from 600 TCD to 20,000 TCD.
- Sugar Industry utilizes both Steam and electricity produced from bagasse fired cogeneration plants for its operation.
- Installed cogeneration capacity is ~8 GW.



### GHG Emission intensity : Sugar Industry

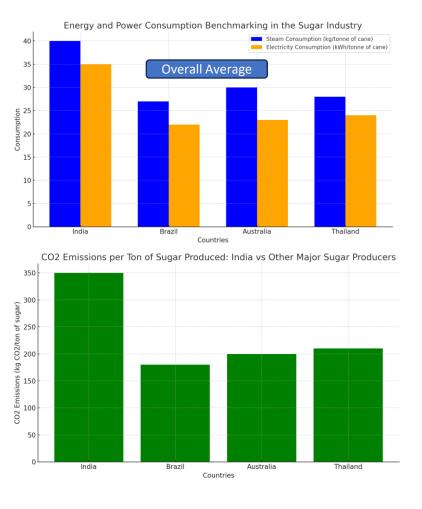


Emission intensity of Indian Sugar Industry with only sugar production scenario

- Bagasse cogenerated electricity  $-90 142 \text{ kg CO}_{2-\text{eq}}/\text{MWh}$
- Sugar Production 324 to 410 (with CG) / 622 to 842 kg CO<sub>2-eq</sub>/MT

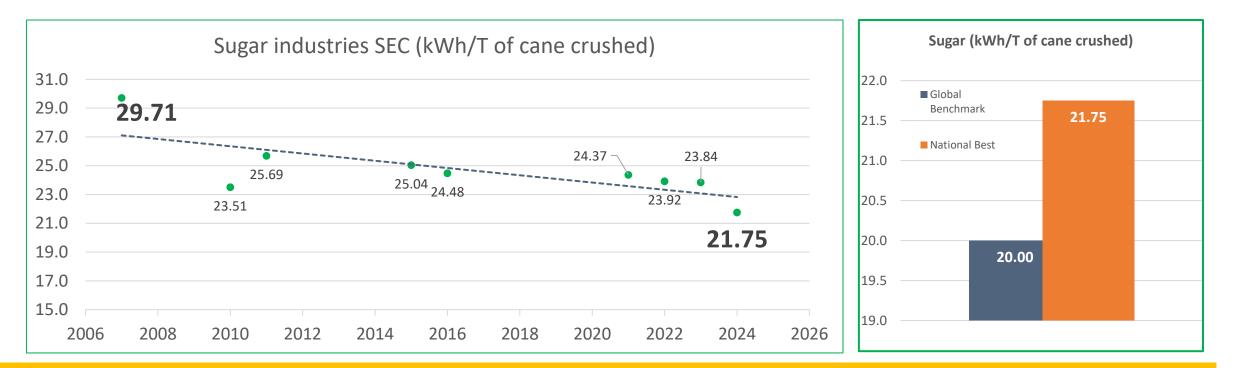
Alternative use of byproducts of sugar industry contribute to negative emissions and lower the overall GHG EI by 13-15%.

Source: Life cycle assessment of sugar and electricity production under different sugarcane cultivation and cogeneration scenarios in India


- Sugar plant byproducts Bagasse, Molasses, Press mud, Spent wash
- The sector has advanced in cogeneration technology with Bagasse as fuel
- Government policies enabling
  - Ethanol production from Molasses as feedstock under Ethanol Blending Program (EBP)
  - Compressed Biogas (CBG) from Press mud and Spent wash under National Bioenergy program (NBP).



# Need for Energy Management in Indian Sugar Industry


- As per latest information, the sugar industry is considered a potential candidate to be notified under a future PAT cycle, as it is considered an energy-intensive sector.
- 10,000 Toe is the threshold level of annual energy consumption for each sugar plant
- Annual energy consumption of sugar industry is about 20.28 Million MTOE – equals to Annual Energy consumption of Maharashtra State
- Energy efficiency in Indian sugar industry is less than other major sugar producing countries.
- Water consumption for electricity 209–354 m<sup>3</sup>/MWh and sugar production 768 – 1040 (with CG) , 1458 – 2097 m<sup>3</sup>/MT
- Improving energy efficiency
  - Helps to minimise the sugar production cost
  - Make Indian sugar industry globally competitive

The Indian sugar industry offers good potential for energy saving. The estimated energy saving potential in the Indian sugar industry is about 20%. This offers potential of about 650 MW of electrical energy – **NSI**.



Source: ISMA, UNICA, IEA, FAO, GSA





- SEC of some of the large sugar industries are close to Global SEC.
- Major driver is the incentive in exporting the excess power to consumers.
- Installation of high-pressure co-generation systems, process optimization, automation of control systems are some of the other drivers.

SEC Reduction (considering 2014 as base year): 7.0%



© Confederation of Indian Industry

## Best practices for Energy Efficiency Improvement

#### **Cogeneration and Steam Optimization**

• Higher efficiency, reduced fuel consumption, and potential revenue from selling surplus electricity to the grid.

#### **Process Optimization**

- Evaporation & Crystallization Multi-effect Evaporators, Mechanical vapor recompression (MVR) Systems
- Waste heat recovery

#### Improving electrical energy efficiency

• Use of VFD, energy efficient motors and efficient gear boxes

Conduct regular energy audits to identify energy losses and optimize them

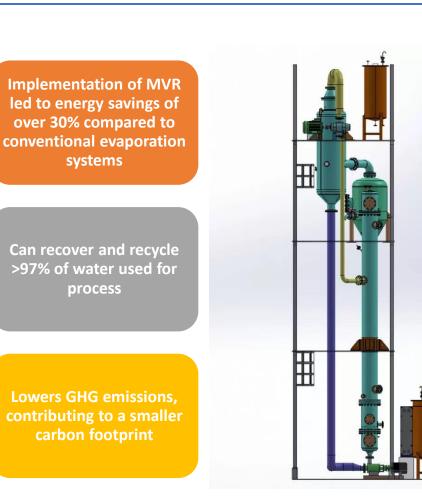
Energy management system and Automation of process



# Cogeneration and Steam Optimization

- Cogeneration and Steam Optimization
  - Most of the sugar factories in India, cogeneration units work at very low cycle efficiency.
  - Moisture content of bagasse important factor for improving pressure and temperature
  - Moisture of bagasse is to be brought down to as low as possible by use of waste heat going out of chimney – Bagasse Dryer

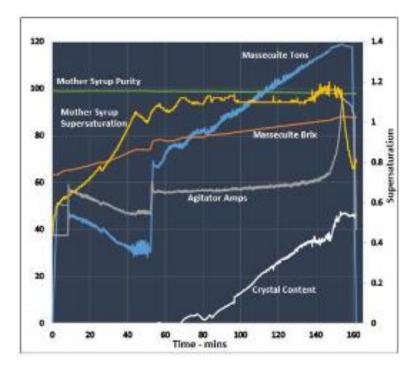
| Boiler<br>Pressure,<br>ata | Cane<br>crushed/hr,<br>MT | Bagasse<br>produced<br>, MT | Steam<br>Produced,<br>MT | Power<br>Potential,<br>MW | Power<br>plant<br>Efficiency,<br>% |
|----------------------------|---------------------------|-----------------------------|--------------------------|---------------------------|------------------------------------|
| 67                         | 1                         | 0.3                         | 0.7                      | 0.14                      | 18%                                |
| 87                         | 1                         | 0.3                         | 0.7                      | 0.17                      | 21%                                |
| 110                        | 1                         | 0.3                         | 0.7                      | 0.20                      | 24%                                |
| 125                        | 1                         | 0.3                         | 0.81                     | 0.23                      | 29%                                |
| 140                        | 1                         | 0.3                         | 0.84                     | 0.28                      | 35%                                |
| 160                        | 1                         | 0.3                         | 0.87                     | 0.32                      | 40%                                |
| 225                        | 1                         | 0.3                         | 0.96                     | 0.40                      | 50%                                |


Source: <u>Bio-Energy from Indian Sugar Industry: A</u> <u>Sustainable Renewable Energy Future (ijert.org)</u>



# Mechanical Vapor Recompression (MVR)

- MVR involves compressing vapor to a high pressure and temperature using a mechanical compressor
  - Can be used to heat the process fluid which generated more vapor
  - It allows continuous energy recovery
  - commonly used in industrial processes such as evaporation and distillation.
  - Very effective in sugar industries
  - Several Indian sugar mills have integrated MVR technology into their operations, particularly focusing on reducing energy costs associated with evaporation









## Sugar factory automation and optimization

- Technologies available for process optimization
  - AI/ML
  - Optimal tuning of PID controller
  - Digital twin solutions for optimizing crystallization process
- Automation helps to
  - visualize, control and optimize the process operations
  - Lowering energy consumption
  - Improving quality
  - Reducing inventory cost





#### Use of IOT for increasing the yield and Savings – Water, Energy and Carbon





#### Localised Irrigation Schedule Platform

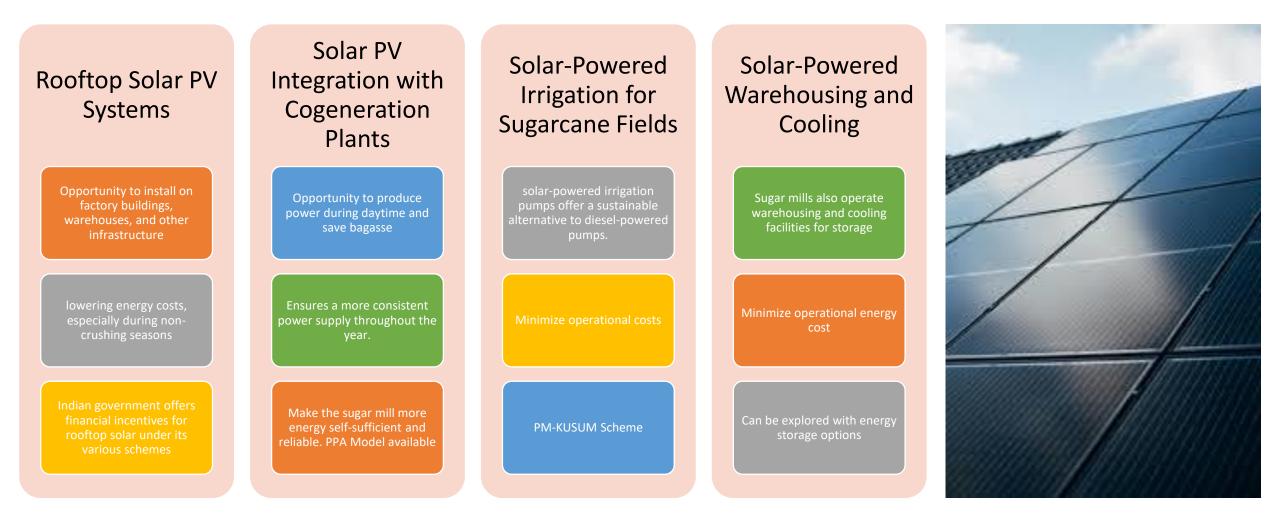
Cloud-based database that uses weather forecasting and farmspecific data to produce irrigation schedules.





Executes irrigation commands, acts as a weather station and deals with power outages.

#### Farmer Mobile Interface


Mobile app that allows the farmer to view and modify irrigation schedule

| Site Name | Energy<br>savings      | Water<br>savings | CO <sub>2</sub> savings                 |
|-----------|------------------------|------------------|-----------------------------------------|
|           | kWh/crop<br>cycle/acre | %                | kg CO <sub>2</sub> / crop<br>cycle/acre |
| IFFCO     | 347                    | 43               | 274                                     |
| EID Parry | 579                    | 72               | 457                                     |



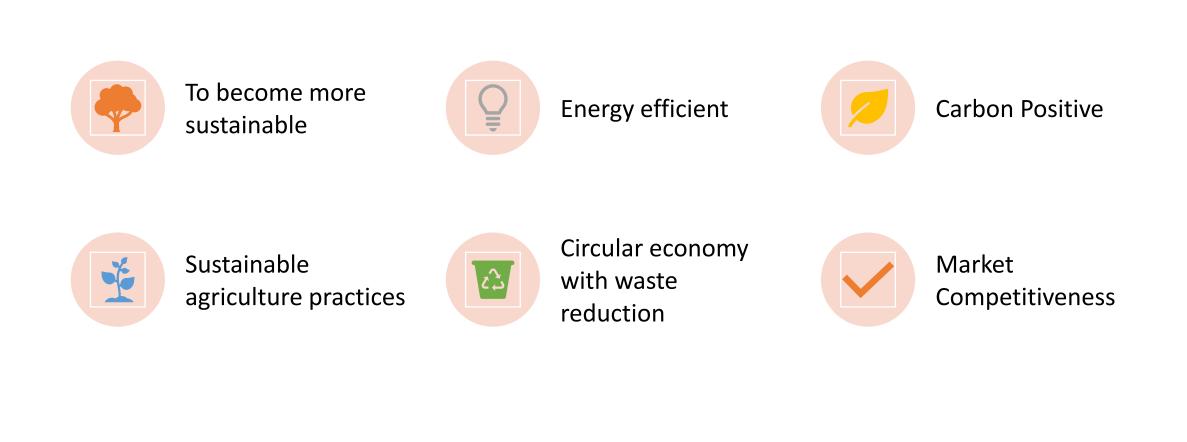


#### RE Integration- opportunities in Sugar Industry





#### Indian Carbon Market – Opportunities for Sugar Industry


- Indian Carbon Market is designed to drive emission reductions in the energy and GHG intensive sectors
  - setting emission targets and establishing a market for Carbon Credit Certificates
  - the system encourages the adoption of cleaner technologies, energy efficiency measures, and investments in low-carbon projects, thus contributing to India's overall climate goals.
- Under this, certain industries or manufacturing facilities, known as obligated entities, are assigned GHG reduction targets by the Central Government and the facilities have to comply with the emission targets.
- It aims to create a market-based approach to achieve cost effective GHG emission reductions by facilitating trade of Carbon Credit Certificates (1 CCC = 1 T CO<sub>2</sub>e reduction).

- India's Carbon Credit Trading Scheme, 2023 was notified by the Government of India on 28 June 2023 under the Energy Conservation Act, 2001.
- Benefits of CCTS
  - Financial incentives
  - Energy efficiency improvements
  - Sustainability and Brand image
  - Compliance with international market regulations
  - Boosting competitiveness
  - Encouraging innovation long term sustainability

CCCs can serve as a financial tool and a driver for sustainability in the sugar industry, encouraging more energy-efficient and environmentally friendly practices.



## What Sugar industry should aim for?







Showcase climate leadership through corporate actions

Commitment to climate resilient development Preparedness for a carbon constrained future

Outperform voluntary and mandatory requirements Enhance brand value, reputation and market expansion Transparency and communication among stakeholders



#### **Companies committed for the Net – Zero program**













**Expanding Horizons** 





**IFB** Industries Limited

KANSAI NEROLAC



© Confederation of Indian Industry

# How can CII-GBC support in realizing Net Zero targets?

- Supporting Industry from Inventorization to Net Zero
  - GHG Accounting
  - Detailed Energy Audits,
  - Life Cycle Assessments,
  - GreenCo
  - GreenPro
  - IGBC
  - Green Entrepreneurship Council
  - Low Carbon Technology Roadmaps
  - Facilitating B2B meetings
  - ... and many more!





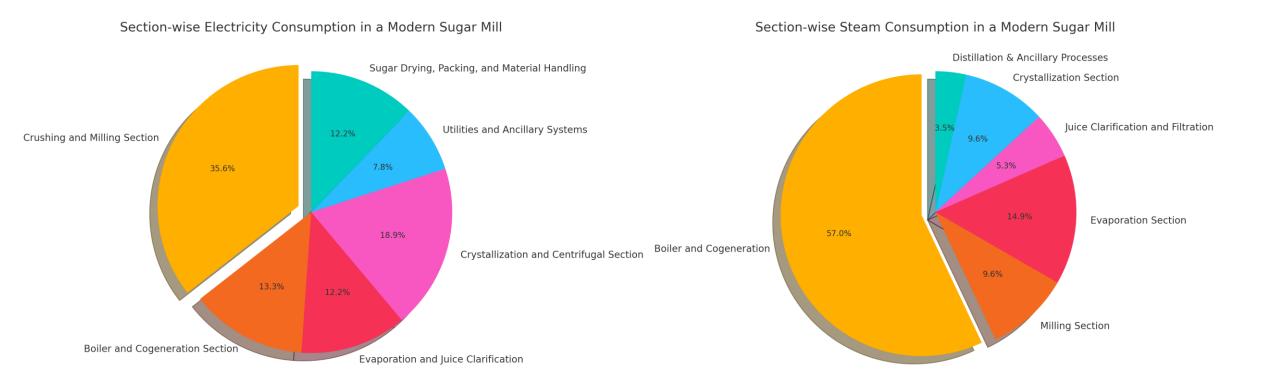




----Principal Supporter--



ENGINEERING TOMORROW


**Thank You! Supporters 2024** 

Corporate Supporting Association Contributor Dalmia **Bharat Sugar** 

----Platinum Supporter--



## Section wise Electricity & Steam consumption break-up



